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HYPERSONIC AERODYNAMICS FELLOWSHIPS-- | -
FINAL REPORT i
by ,‘

John D. Anderson, Jr., Professor i
Department of Aerospace Engineering D
University of Maryland 5%/\
College Park, Maryland 20742

This is a final report on ARO Grant DAALO3-88—G-00§3. This research
program was to provide graduate fellowships to students in the area of
hypersonic aerodynamics. Indeed, the Army Research Office can take some
pride in the fact that this funding was the leading edge of a renewed emphasis

in hypersonic aerodynamics in universities during the middle 1980's, at a

time when this discipline was seriously languishing. In particular, this grant.

served to spur the growth of the Hypersonics Group at the University of
Maryland— a group which now numbers 17 full-time graduate students. In
this sense, we wish to express our gratitude to ARO for helping our graduate
program in hypersonic aerodynamics in such a pivotal manner.

The following students were funded under the ARO Fellowship

Program at Maryland. Also listed are their current status.

1. Dr. Kevin Bowcutt. Received his Ph.D. under the ARO Fellowship

Program, and is now a lead research engineer with Rockwell in
their National Aerospace Plane Program. Dr. Bowcutt was selected
as the Rockwell Engineer of the Year in 1990 -- a very prestigious

award for such a young engineer.




2. Dr. Griffin Corpening. Received his Ph.D. under the ARO

Fellowship Program, and is now a research leader at the Johns
Hopkins Applied Physics Laboratory (APL) in their hypersonic
SCRAMJET program. Last year, Dr. Corpening was awarded APL's
Best Paper of the Year Award, for an AIAA paper based on his Ph.D.
dissertation. (This paper is included as Appendix B in this Final
Report.)

3. Mr. Scott Seifert. Finished all requirements for his Ph.D. except for

his Oral Comprehensive Examination and his Dissertation. Mr.
Seifert is now continuing to work towards finishing these .
requirements, while at the same time accepting employment at the

Applied Physics Laboratory.

The following accomplishments have been made as a direct result of
this ARO Fellowship Grant:

1. Two Ph.D.'s and one near Ph.D have been added to the United
State's engineering work force in hypersonics, at a critical time
when they were badly needed. Moreover, these graduates are top-
notch people -- the creme of the crop. Both Drs. Bowcutt and
Corpening graduated with perfect 4.0 Grade Point Averages --
straight A's.

2. Dr. Bowcutt's Ph.D. research dealt with a new approach to
hypersonic waverider design, and led to a new, unique family of
hypersonic waveriders called viscous optimized waveriders. These
University of Maryland waveriders have prompted a new surge in

waverider activity around the country. Our waverider computer
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program (MAXWARP) is now being used by 15 companies and
government laboratories. Two University of Maryland waveriders
have been successfully tested in the NASA Langley hypersonic
wind tunnels, validating our analysis and multiplying interest in
these waveriders. Langley is now embarking on their own high-
priority waverider program, as a result. In October 1990, the
University of Maryland hosted the 1st International Hypersonic
Waverider Symposium, which was an acclaimed success. There

have been three articles in Aviation Week over the past four

months describing the University of Maryland Waverider Program.

All of this was started with the ARO Fellowship Grant. We

sincerely believe that ARO can take pride in this accomplishment -
the ARO Grant was a seed upon which a major program has been
built - a program with far-reaching results affecting many people in
our national hypersonics effort.

3. Dr. Corpening's Ph.D. research was an application of computational
fluid dynamics to a flow problem of interest. The flow problem was
the interaction of a vortex with an oblique shock wave at
hypersonic speeds. Dr.Corpening wrote his own three-dimensional,
finite-volume computer program to solve this problem. The results
indicated a major interaction between the vortex and the shock, the

first such data at hypersonic speeds.

The details of this technical work are contained in Appendices A and B.




These are:

Appendix A: Bowcutt, K.G., Anderson, ]J.D. and Capriotti, D., "Viscous
Optimized Hypersonic Waveriders," AIAA Paper No. 87-0272.

Appendix B: Corpening, G. and Anderson,]., "Numerical Soiutions to
Three-Dimensional Shock Wave/Vortex Interaction at Hypersonic

Speeds,” AIAA Paper No. 89-0674.

Hence, no further elaboration will be given here. The remainder of this
report is represented by the technical descriptions given in Appendices A and
B.
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VISCOUS OPTIMIZEN HYPERSONIC MAVERIDERS

by

Kevin G. Bowcutt,* John D. Anderson, Jr.,** and Diego Capriotti®**

Department of Aerospace Engineering
University of Maryland
College Park, Maryland 20742

"1t is neally not fonesceable that an 'optimized' calculated shape could do anything

mone than give a guide to the desdignmer.
actually wants §rom the aerodynamicist,

However, 4t 4{s only a guide that Lhe designer
He would neally be a Little embarrassed to be

offered a perfect aerodynamic shape, which he would then have to carve holes in, add
fainings, and 80 on, 4in order Lo satisfy such mundane requirements as that the pilot
should be able to see where he s goding or that people have somuchere convendent Lo get

in and out.”

ABSTRACT

A tamily of optimized hypersonic waveriders
1s generated and studied wherein detailed viscous
effects are included within the optimization pro-
cess itself, This s in contrast to previous
optimized waverider work, wherein purely fnviscid
flow is used to obtain the waverider shapes. For
the present waveriders, the undersurface is a
streamsurface of an inviscid conical flowfield,
the upper surface is a streamsurface of the
fnviscid flow over a tapered cylinder (calculated
by the axisymmetric method of characteristics),
and the viscous effects are treated by integral
solutions of the boundary layer equations.
Transition from laminar to turbulent flow is
included within the viscous calculations, The
optimization is carried out using a non-linear
simplex method. The resulting family of viscous
hypersonic waveriders yields predicted high
values of 1i{ft/drag, high enough to bresk the
“L/D barrier” based on experience with other
hypersonic configurations. Moreover, the
numerical optimization process for tha viscous
waveriders results in distinctly different
shapes compared to previous work with inviscid
-designed waveriders, Also, the fine details
of the viscous solutfon, such as how the

P.L. Rpe
Royal Afrcraft Establishment
January 1970

shear stress is distributed over the surface, and
the location of transition, are crucial to the
details of the resulting waverider geometry.

I. INTRODUCTION

Over the past few years, interest in all
aspects of hypersonic flight has grown explost-
vely, driven by new vehicle concepts such as the
National Aerospace Plane (NASP), aero-assisted
orbital iransfer vehicles (AOTV's), the hyper-
sonic transport (the *Orient Express"), and
hypersonic missiles, to name just a few. An
extended discussion of these concepts, as well as
a survey of hypersonic asrodynamic research
contrasting the "old" with the “new" hypersonics,
is given in Ref.l, Hence no further elaboration
will be given here,

The present paper deals with a class of
advanced hypersonic 11fting configurations. To
help understand the motivation for the present
work, the following background is given, For a
1ifting aerodynamic body, it is well-known that
high maximum )ift-to-drag ratios, (L/D)maxs 2re
very difficult to obtain at hypersonic speeds,
due to the presence of strong shock waves (hence
high wave drag) and massive viscous effects. At
supersonic and hypersonic speeds, the most effi-
cient 1ifting surface is the infinitely thin flat
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plate; the inviscid hypersonic aerodynamic pro-
perties of a flat plate are shown as the solid
curves in Fig.1, based on the Newtonfan limit of
free stream Mach number M % and v = C,/C,»1,
Note that L/0 theoretically approaches ?nf‘nity
as the aajle-of-attack, a, approaches zero, In
reality, viscous effects will cause L/D to peak
at low vaTues of a, and to go to zero as a=p0,
This 1s illustrated by the dashed line in Fig,l,
which shows the vartation of L/D modified by skin
friction as predicted by a reference temperature
method described in Ref. 2. Although the infinit.
ly thin flat plate shown in Fig.l is the most
effective 1ifting surface aerodynamically, it s
the least effective in terms of volume capacity,
It goes without saying that all practical flight
vehicles must have a finite volume to carry fuel,
nayload, etc., Hence, the flat plate results, al-
though instructive, are of academic interest
only, 1In contrast, Fig. 2 shows valuo; gf
(L/N)max Versus the volume parameter v°/°/s for
severc? generic hypersonic configurations, obtain-
from Ref, 3, Here, V is the body volume and S is
the planform area. Note from Fig.2 that typical
hypersonic values of (L/D)gay range from 4 to 6
for such 1ifting bodies at the conditions shown,
These values are also typical of the hypersonic
transport configuration studied in Ref. 4. Clear-
ly, values of (L/D)yay for hypersonic vehicles

are substantially lower than those for conven-

al subsonic and low supersonic airplanes, (For
example, the maximum L/0 values for the World War
11 Boeing B-29 and the contemporary General Dy-
namics F-111 are 16.8 and 15.8 respectively, as
obtained from Ref. 5). [ndeed, as M, increases
across the supersonic and hypersonic regimes,
there is a general empirical correlation for
{L/D)max Dased on actual flight vehicle experi-
ence, given by Kuchemann :

4(M_s3)
max © L

This variation is shown as the solid curve in
Fig.3. Also shown are a number of data points

for various previous hypersonic vehicle configu-
rations at various Reynolds numbers (the open sym-
bols), as well as new results from the present in-
vestigation (the solid symbols)., Fig. 3 is pivo-
tal to the present paper, and will be

discussed at length in subsequent sections. How-
ever, at this stage in our discussion, Fig.3 s
used to illustrate only the following aspects:

(L/”

1. The solid curve represents a type of “L/D
barrier® for conventional hypersonic vehi-
cles, which is difficult to break.

2. Data for conventional hypersonic vehicles,
shown as the open circles,
form an almost random “shotgun® pattern
which, for the most part, falls below the
solid curve, ’

(The numbers adjacent to these open
circles pertain to specific reference num-
bers itemized in Ref, 7, which should be
consulted for details,)

3. The solid symbols pertain to the present
study, and represent a new class of hyper-
sonic configurations which break the “L/0
barrier." These configurations are conical
flow waveriders that are optimized with de-
tafled viscous effects included directly in
the optimization process.

To help understand the contridbution made by
the present work, let us driefly review the gener-
al concept of waveriders, |[n 1959, the design of
three-dimensional hypersonic vehicles which support
planar attaghed shock waves was fntroduced by
Nonweiller, ' who hypothesized that straamsurfaces
from the flow behind a planar oblique sho-k could
he used as supersonic lifting surfaces. This led
to a class of vehicles with a caret-shaped trans-
verse cross-section and a delta planform-- the so-
called caret wing as shown in Fig.4., MHere, the
body surface is generated by stream surfaces behind
a planar oblfque shock wave, The shock wave s
attached to the sharp leading edges at the design
Mach number, and hence no flow sptilage takes
place around the leading edge, The 1ift is high
due to the high pressures dehind a two-dimensiona)
planar shock wave, exerted on the lower surface of
the vehicle, Because the body appears to be rid-
ing on top of the attached shock wave, it is
called a "waverider®, The aerodynamic advantages
of such waveriders are listed in Ref, 1, and are
discussed in great detail in Refs. 7 and 10. In
short, without repeating the detafls here, at a
given 1ift coefficfent, caret waveriders theore-
tically operate at higher L/D values than other
hypersonic configurations,

Expanding on this philosophy, other types of
flowfields can be used to generate waveriders, For
example, any streamsurface from the supersonic
flow over an axisymmetric body can be used to
generate a waverider with an attached shock wave
along its complete leading edge. Work on such
waveriders was first carried out in Britain, as
nicely susmarized in Ref, 11, where the flow over
a right-circular cone at zero degrees angle of
attack is used to generate a ciass of “"conical
flow" waveriders, Still later, waveriders were
generated from inclined circular and elliptic
cones, and axisymmetric bodie;zniih longitudinal
curvature by Rasmussen et al, “* " | using hyper-
sonfc small disturbance theory, This work was
further embelished by the search for o§t1m1zag
waverider shapes, For example Cole an en
found optimized waveriders derived from axisym-
metric bodies with longitudinal curvature by using
hypersonic small disturbance theory to generate
inviscid flow solutions, and then utiifizing the
calculus of variations to obtain the optimum
waverider shapes. Later, Kim et al. used the same
philosophy to derive optimum waveriders from
fiowfields about unyawed circular cones ~, and
yawed circular and elliptic cones ", In Refs, 14-
16, the advantage of hypersonic small disturbance
theory is that analytic expressions are obtained
for surface pressure distributions, hence lift and
wave drag, thus enabling the application of the
calculus of variations for optimization,

Unfortunately, to date the potential superiority

of waveriders as hypersonfc high L/D shapes has

not been fully demonstrated, either in the wind
tunnel or in flight, A basic problem arises
because of the tendency for waveriders to have
large wetted surface areas, which leads to large
friction drag. A)) previous waverider optimiza-
tion work (such as Refs, 14-16) has been dased on
the assumption of inviscid flow, after which an
estimate of skin friction for the resulting con-
figuration {s sometimes added. As a result, the
real aerodynamic performance of the resulting opti-
mum configuration usually falls short of its expec-
tations.




The purpose of the present work is to remove
this deficiency. 1n particular, a series of con-
ical-flow generated waveriders are optimized for
maximum L/D wherein detailed viscous effects (in«
cluding houndary layer transition) are included
within the optimization process itself, This
Teads to a new class of waveriders where the opti-
mization process is trying to reduce the wetted
surface area, hence reducing skin friction drag,
while at the same time maximizing L/0., Because
detailed viscous effects can not be couched in
simple analytical forms, the formal optimization
methods based on the calculus of vartations can
not be used. Instead, in the present work a
numerical optimization technique is u;;d. based on
the simplex method by Nelder and Mead . By using
a numerical optimization technique, other real
configuration aspects can de included in the ana-
lysts in addition to viscous effects, such as
blunted leading edges, and an expansion upper sur-
face (in contrast to the standard assumption of a
free stream upper surface, f.e,, an upper surface
with all generators parallel to the freestream
direction), The resylts of the presant study lead
to 8 new class of waveriders, namely “viscous
optimized" waveriders., Moreover, these waveriders
appear to produce relatively high values of (L/0),
as will de discussed in subsequent sections,

1. ANALYSIS

For the present waverider configurations, the
following philosophy is followed:

1. The lower (compression) surface is generated
by a streamsurface bdenhind a conical shock
wave. The inviscid conical flowfield s
obtained from the numerical solution of the
Taylor-Maccoll equation, derived for example
in Ref, 18,

2. The upper surface s treated as an expansion
surface, generated in a similar manner from
the inviscid flow about a tapered, axisym-
metric cylinder at zero angle of attack, and
calculated hy means of the axisymmetric
method of characteristics.

3. The viscous effects are calculated by means
of an integral boundary layer analysis
following surface streamlines, including
transition from laminar to turbulent flow,

4, Blunt leading edges are included to the
extent of determining the maximum leading
edge radius required to yield acceptabdble
leading edge surface temperatures, and then
estimating the leading edge drag by modified
Newtonian theory.

5. The final waverider configuration, optimized
for maximum L/0 at a given Mach number and
Reynolds number with body fineness ratio as
a constraint, is obtained from the numerical
simplex method taking into account all the
effects ftemized in 1-4 above within the
optimization process itself, o

The following paragraphs descride each of the
above items in more depth; for a highly detailed
discussion, see Ref, 7,

A. lnviscid Flow -- Lower Surface

The waverider's lower surface ig generated
from a streamsurface behind a conical shock wave
supported by a hypothetical right circylar cone
at zero angle of attack, The hypothetical cone
and its flowfield ¥s shown in Fig, S, where 8. is
the cone semi-angle and O¢ IS the wave angle. The
inviscid conical ‘low Is obtained from the Taylore
Maccoli equationl

av av v
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“wVewm e gl
solved by a standard Runge-Kutta, forth-order
accurate numerical technique, namely the RKFAS
algorithm obtained from Ref, 19, In Eq.(1), V. is
the component of nondimensfonal flow velocity
along a conical ray, @ is the angle of the ray
referred to the cone axis, and y {s the ratio of
specific heats, <

Any streamsurface from this flowfield can
represent the wing undersurface of 3 waverider,
as shown in Fig, 6. (For purposes of 1llustra-
tion, Fig. 6 also shows the waverider upper sur-
face as a freestream surface, but this ts only
one of many possible chotces for the upper
surface.) Any particular undersurface is unie
quely defined by the intersection of the confcal
flow streamsurface with the conical shock wave,
as shown by the curve labeled “leading edge” n
Fig. 7. Let us examine Fig.7 more closely. It
is a front-view of the hypothetical conical
flowfield, 1liustrating the cone apex at the
center, and both the cone base and shock base at
some arditrary distance downstream of the apex.
Consider a curve tn this front-view, lying below
the apex (or even including the apex), as shown
by the curve ladbeled "leading edge”. WNow
construe this curve as a trace on the conical
shock wave itself, and visualize streamlines
tratling downstream from this trace; the
resulting streamsurface is the waverider undere
surface sketched 1n Fig, 6, {ndeed, the curve
labeled “1eading edge” in Fig. 7 is simply the
f~rward projection of the waverider leading edge
on the cross-flow (x-y) plane. This curve is
treated as completely general, except for the
constraints that it be symmetric about the y-z
plane, and that it Yie entirely below the x-2
plane to ensure that the waverider undersurface
1s a compression surface, Also in Fig. 7, note
the curve ladeled "trailing edge”, This is the
intersection of the particular conical flow
streamsurface with the plane of the shock base,
and it represents the bottom surface trailing
edge of the waverider, This 1s the shape of the
bottom of the waverider base, as sketched in Fig,
%. Returning to Fig.?, the area between the
“leading edge” and “trailing edge" curves is the
forward projection of the entire waverider
compression surface. Moreover, the dashed line
emanating from the cone apex in Fig, 7 is the
forward projection of a conica) flow streamiine;
hence, that portion of the dashed 1ine contained
between the “leading edge" and “tratling edge”
curves 1s the projection of a particular
streanl ine along the waverider undersurface, from
the leading edge to the trajling edge.




8. Inviscid Flow -- Ypper Surface

In nost previous waverider work, the upper
surface fs treated a5 3 freestream surface, s
t1lystrated 11 Fig, A, Mere, the ypper surface
pressure |s freestream pressure, n,. However, if
the upper surface is made an expansion surface,
where p(Pe. then a small but wmeaniagful contridu-
tion to L/ can be obtained. This approach s
taken here, Similar to the philosophy for the
lower surface, the upper surface is a streamsur-
face “carved” from a known expansion flow. The
hypothetical expansion body chosen here is 2 cir-
cular cylinder of given radius; the cyclinder is
aligned parallel to the flow and, at some point,
is tapered parabolically to a smaller radius. The
resylt is an axisymmetric expansion flow, wher:
the domain of expansion is bounded by a freestream
Mach cone cantered on the cy linder axis, as shown
in Fig. B, Parabolic taper was chosen because it
is relatively simple, and the resulting expansion
body slope is everywhere continuous. 0Once the
expansion body is chosen, it remains only to
geometrically position the expansion regfon rela-
tive to the lower surface, choose the inftial and
final cylinder radif, golve the inviscid expansion
flow, then cyt a streamsurface from that f ow %0
serve as the waverider upper surface., This basic
idea was first devolggcd for two-dimensfonal
expansions hy Flowe;l . and later for axisymmetric
expansions by Moore” ',

The axisymmetric flow is calcylated from the
axisymmetric method of characteristics, using the
two-spep predictor-corrector iteration scheme of
Ferri®®, The details involving the matching of
the resulting expansion surface with the confcal
flow compression surface are straight forward, but
lengthy, Considering that the expansion surface
contributes only about 10% to the value of (L/0),
no further space for its discussion is justified
in the present paper; for the coaplete
discussion, see Ref, 7,

C. Leading-f£dge Bluntness

Waveriders, by design, have sharp leading
edges that support attached shock waves.
However, for flight Mach numbers above five, the
temperatures for sharp leading edges will exceed
“he practical limits of most structural
materials. Thiy leads to the need for blunt
leading edges with sufficiently large radit such
that the aerodynamic heat flux is reduced to
reasonadle levels, However, 4t the same time the
leading edge radius should be as small as
possible to reduce the nose drag,

To reggce the required leading edge radius,
Nonwetler®” nhas proposed adding conducting
materta) aft of the leading edge to transport
thermal enerqgy away from the region of high cone
vective heating near the stagnation or attachment
Tine, and conduct it downstream to areas where
convective heating is lover, and excess energy can
be radiated away from the body. Nonweiler labeled
this theoretical concept a: a “"conducting plate®,
which {s somewhat analogous to other passive
coaling techniques, such as heat pipes. Using
Nonweiler's bastc techaique, minimum leading edge
radif can be ascertained, once flight Mach number,
freestream conditions, leading edge sweep,
matertal properties, and maximum allowadble tes-
perature are known,

In the present work, Nonweiler's technique
was used to determine the leading edge radii for
waveriders Jesijned for Mach nunbers between §
and 25, The leading edge material used for the
calcuistions was ATJ graphite, chosen because it
s representative of materfals with Righ conduc
tivity and high nelting point temperature, Netails
of this technique as applied to the present work
are given in Ref. 7. It is interesting to note
that, for conditions associated with the typical
flight path of a lifting hypersonic vehicle enter.
ing the earth's atmosphere at Mach 25 and dece-
Terating to Mach 6 at Jower altityde, the minimun
teading edge diameters ranged from 6 to 28 mn --
quite small in comparison to a typical overall
length of, say 6Um, Therefore. the oresent wavert.
ders are essentially "aerodynamically sharp* from
that point of view. Regardless of the apparently
small amount of reguired l2ading edge bluntness
(from the aerodynamic heating point of view), the
present waveriders were geometrically altered to
accomodate the blunt edge, and the contributinn to
aerodynamic forces on the waverider were estimatad
assuming a modified Newtonfan pressure distribution
on the leading edge.

J. Viscous Flow Analysis

A major aspect of the present investigation
is that optimum waverider shapes are obtained
wherein detailed viscous effects are included
within the optimtzation process itself, These
viscous effects are calculated by means of two
integral boundary layer techniques, described
below. 1n all cases, the boundary layer flow is
assumed to be locally two-dimensional, following
the inviscid upper surface and lower surfice
streanlines, 8oth laminar and turbulent flow are
considered, along with a transition region based
on empirical correlations.

D.1 Laminar Analysis

The lamfnar boundary layer calculations
were performed using Walz' integral method, as
described in Ref, 24, The method requires the
solution of a set of coupled first-order ordinary
differentia)l equations along the boundary layer
edge streamlines, These eguations are the boun-
dary layer momentum and mechanical eneryy
equations, given by
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Note that in the above equations, primes denote
differentiation with respect to x, here repre-
senting the boundary layer coordinate tn the
streamline direction, The variables in Egs.
(9)-(12) are defined by Walz to be
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Carafu) inspection of £q. (21) reveals that it is
an implicit equation frr W*, since y is a complex
function of Ww*, Therefore, in practice, a numeri-
cal zero-finding routine 1s used on Eq. (21) to
find the value of W* that yields the known value of
W, W¥alz suggested an approximation that would
allow closed form solution of Eq. (21), however,
the present authors have found that it made boun-
dary layer calculations blow up when ysed for a
Mach six flat plate test case. Hence, the
suggested approximation was discarded in favor of
the zero-finding approach. For more details on the
numerical solution of these integral boundary layer
equations, see Ref, 7.

D,z Turbulent Analysis

1f and when boundary layer transition is
predicted, turbulent bouhdary layer calculations
are performed using the 1nner2variable integral
method of White and Christoph®”, [n practice, the
method requires solution of one of two first-order
ordinary differential equations along the boundary
layer edge streamlines, depending upon the value of

the parameter x/xmx, where
7z
Y/
T (29)
Anax * 875 logjq Re* - (30)
(r 7.1/
s~ o (31)
sin""A+sin~8
2
- T u
2 (. 81/2 ¢
and Re* ",, (T:) T; (32)
In Eq. {31), the parameters A and B are defined
as
A=a/c (33)
8 = b/c (34)
where
TGW’TH
L IR T -2 (35)
T -7
aw W
b= —f;— (36)
T +T T
c e l( aw V)’ -4 1/2 (37)
e

and Taw {s defined by [q. (20), except that now
the recovery factor is the turbulent value,

r s prl/3 (38)




According to Ref. 24, if A/) <€ 0.16, or Re®<0,
then the differential equatiﬂﬁ

[
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1s valid; however {f x/xm‘x » 2.36, then the
equatton
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applies, where

£v s (2.838z + 1.8432%Jexp(-44 2°) (41)
g* = 1 - 2.3z + 1.762° (42)
L S Y2 (43)

and the primes denote, as in the laminar case,
differentiatinn with respect to the streamline
coordinate, x, For more details concerning the
nunerical solution of these equations, see again
Ref, 7,

D, 3 Transition Analysis

The prediction of transition from lami-
nar to turbulent flow at hypersonic speeds is a
state-of-the-art research topic. In the present
analysis, the correlation used for predicting the
onset of transition is based on two sets of data:
(1) daga for sharp cones at zero angle-of-
attack® ; and {2) data for wing; with blunt,
swept supersonic leading edges” , The correla-
tion gives local transition Reynolds number Re,
as a fug&tion of local edge Mach number, Mg, as
follows” :

t.

109)p(Re, ) = 6.621 exp (1.209x107°¢ %) (40)

In turn, this value of transition Reynolds numder
is modi{jed for wing leading-edge sweep, as
follows™ "

Re

{ ‘z)n

= 0.787cos4‘3‘6

£-0.7221e70+0991Ag 9464
(45)

where A is the sweep angle, and (Rext)A-O is
obtained from £q.(44),

(R.‘t)A-o

Once the onset of transition has been pre-
dicted, the extent of the transition region,
hence the end of transition, is predicted using a
relationship developed by Harris and Blanchard ",
as follows: 0.2

Xq ® xt‘[lOS(Ro‘)t" ] (46)

where xp, and ¢y are the distances along a
streamline from the leading edge to the beginning
and end of transition, respectively, and (Re )y

the local Reynolds number at the beginning of tran-
sition obtained in the present analysts from £q485),

The variation of local skin friction coef-
ficient within the transitional region (between xyq

and xp4) 1s assumed to be & linear combination of
the laminar (cFL) and turbulent (CfT) values that

would have existed if the boundary layer were
conpletely laminar or turbulent, respectively. The
transitional friction coefficient, Cyges 'S thus
related to cf and crp by:

Crra (1-¢) r £ <y (47)
where ¢ is a weighting factor (a function of x)
inspired by Emmons (as discussed in Ref.29), For
the present investigation, the following expres-
sfon for £ is, as derived fn detail {n Ref, 7:

tn 2 0,2 2

-3 ex {Re Yei“(xen, ,)]-1
€(x) = l-e : D["EJ el (xexg -1 (48)

[t is not possihle within the current state-of-
the-art to evaluate the accuracy of these tran-
sitfon correlations. After a study of the existing
literature, the present authors feel that the above
relations form a practical method for simulating
transition within the goals of the present study,
They provide a mechanism for assessing the effect
of transition on optimum waverider shapes; indeed,
as discussed in the results, one series of numeri-
cal experiments is conducted wherein the transition
location is varied as a parameter.

€., Aerodynamic Forces

The 1ift, drag, and hence L/D s calculated
from a detailed integration of the local surface
pressures and shear stress over the waverider
surface. Consistent with wind tunnel practice
as well as other literature, base drag is not
included in the present results, (For example,
2}) the data shown in Fig., 3 do not include
base drag.) This is done to enadble a rational
comparison with other data, Moreover, at very
high Mach number, the base drag becomes a small
quantity in comparison to forebody drag. DNetails
on the pressure and shear stress numerical
integration can be found in Ref, 7.

F. Waverider Optimization

Once a specific shape for the forward leading
edge projection of a waverider {s chosen, (such as
shown in Fig, 7), the techniques outlined in the
previous sections can be used to generate the cor-
responding waverider and evaluate its Vift-to-drag
ratio (L/D). Finding the leading edge shape that
maximizes L/D, with all other parameters held
fixed, then requires an optimization scheme that
can systematically change the projected leading
edge shape in search of the one that yields maximum
L/0. Unfortunately, most existing optimization
schemes require that the function of interest have
an analytical description -- 3 requirement not pos-
sible in the present work. There is one scheme,
however, a non-linear simplex mf;hod for function
minimization by Nelder and Mead ', that requires
nothing more than the ability to numerically
evaluate the




function, This scheme has been ysed in the pre-
sent work to find op;imum waveriders,

In general, the scheme of Ref.17 minimizes a
function of n variables by comparing valyes of
the function at {n+l) vertices of a “simplex”,
then replacing the vertex with the highest func-
tion value by another point determined via the
logic of the scheme, As a resylt of the
algorithm logfc, “the simplex adapts itself to
the loca) landscape [of the function surfacel,
elongating down long inclined planes, changing
direction on encountering a valley at an angle,
and contracting in the neighborhood of a
minimum", according to Ref,17, In this scheme,
three operations -- reflection, contraction and
expansion -- are used to modify the current
simplex in an attempt to replace the vertex
having the highest function value with one having
3 lower valye, Each of three operations replace
one or more of the (n+1) points {Po,Py,...,p)
that define the current simplex in n-éimensional
space with new points that yield progressively
smaller function values (fy,f1,...,fp) at the new
vertex points. A graphic ?llustration of how the
method works s shown in Fig. 9 for a hypotheti-
cal function, f, of two variables, C; and Cp. In
the figure, a triangle with vertices on the funce
tion surface represents a possible simplex. In
the optimization process, the triangle (simplex)
flip-flops down the function valley, expanding if
possible to speed up the process, then contract-
ing when 1t straddles the ainimum,

To use the simplex method for optimfzing
waverider L/0, the shape of the forward projec-
tion of the leading edge must be parameterized in
some general way. In the present work, five
points in the. x-y plane, lying {nside of the
shock domain, were chosen to represent the for-
ward leading edge projection. A cubic spline-fit
through the five pofnts is then used to generate
a continuous leading edge, One of the five
points, the symmetry plane point, is constrafned
to lie on the y-axis, hence its x- value is
always zero, This leaves nine varfables, the
remaining x and y values of the leading edge pro-
jection points, for the optimization routine to
manipulate in search of an optimum waverider, A
set of leading edge coordinates thus represent a
single vertex paint,

91 - (XZJ3-‘4J5..Y1-.Y2-¥3..¥4o¥5)1 (49)

of the required simplex, where x; = 0 as
explained, and the function to dbe minimized is
the negative of the 1{ft-to-drag ratio

1,(Py) = (-L/0), (50)

Note that the five leading edge points are used
to define only half of the projected leading edge
shape, since the other half is constrained by
vehicle symmetry to be the mirror image of the
first half,

With nine variables (n=9), ten points (hence
ten leading edge shapes) must be chosen to create
the initial simplex, [n the present work, five
polynomials of the form

Yee " C1 * Co%pe * ‘:3"2 (51)

[
’l. - C‘ L4 CSCO‘(CG %-!r—:‘) (52)

were used to describe the Initial leading edge
shapes; the constants €11C2404.C¢ being varied to
generate a set of distinct shapes, An example of a
set of initial leadiag edge shapes is shown in Fig.
10 -- the bold line representing the final shape
associated with the optimum waverider for this
case. Also note that in the present work, 100
steps of the optimization routine were execuyted for
all cases run, though a convergence criterion could
have been {mplemented as described in Ref. 17. [t
was found that one-hundred steps provided ?dequate
convergence for engineering accuracy (“10° -10")
without using excessive computer resources to
generate an optimized waverider,

For more details on the optimization scheme,
see Ref, 7,

111, RESULTS AND DISCUSSION

The present results are divided into four sec-
tions, as follows: (1) a presentation of optimum
waverider shapes ond aerodynasic characteristics at
Mach 6 and 25, representifg two extremes of the
hypersonic flight spectrum; (2) a numerical experi-
ment to assess the impact of boundary layer trane
sitfon on the optimized waverider shapes: (3) an
assessment of the need to account for detaited sur-
face variatfons of shear stress fn contrast to the
use of an average skin friction coefficient during
the optimization process; (4) an examination of the
question: 1f the skin friction is deleted from the
present analysis, what type of optimized inviscid
waverider configuration is produced?

Due to the spectalized nature of any waverider
generation analysis, including the present one, it
is difficult to obtatn a direct benchmark com-
parison with existing data in order to verify the .
integrity of the current results. However, with
the present analysis, it is possidble to calculate
the aeradynamic properties of a half-cone with a
flat delta wing mounted on top; in this case the
wing will have a sweep angle corresponding to the
shock angle of the cone, and the body will be at
zero degrees angle of attack. This specialized
case was calculated at Mach 6.8 for a haif-cone of
8. = 3.67°, and the corresponding wing sweep angle
of 81°, The resylt is given as the flagged solid
square tn Fig.3, This 1s to be partly compared
with the point labeled P2a, which was obtained from
Ref. 3, and which corresponds to a3 similar flat-
top half-cone, delta wing model, but at conditions
of maximum L/0, hence at some positive angle of
attack. About the only point to be made here is
that the calculated L/0 at zero angle of attack fs
Jower than the measured (L/0) at some angle-of-
attack -= a proper qualitativ!‘?esult. The
measured L/D at zero angle-of-attack is not pre-
sented in Ref. 3; however, through a personal
inquiry to Patrick Johnston at NASA Langley, the
present authors have been told that the measured
L/0 at zero-angle-of-attack was 2,7 -- about eignt
percent higher than the value of 2.5 calculated
with the present analysis, This is a reasonsble
comparison, and 1f anything, seems to {ndicate that
the present aerodynamic analysis is conservative,
(Please note that the comparisons discussed above
are for a g%!!g configuration, not an optimized
waverider; hence any degree of




of validation here pertains to the aerodynamic
portion of the analysis and not to the present
optimization process itself,)

A, Representative Waveriders

In Ref. 7, a series of optimized waveriders is
generated, facluding cases at W, = 4,6,10,15,20
and 25, The conditions correspond to altitude-
velocity points along a typical entry flight tra-
jectory of a lifting hypersonic vehicle, such as
an aerospace plane, [n the present section, only
the results at M, = 6 and 25 are presented as
representative of the two extremes of the flight
spectrum, Ref, 7 should be consuited for addi-
tional results,

Fig. 11 gives values of (L/D), C, and volu~
metric efficiency, n » ¥2/3/S_. for waveriders
optimized at different assuuea wave angles for the
contcal shock. To understand this more fully,
consider the conical flow field associated with a
given conical shock wave, say 8¢ = 11°. For this
value of 6, an optimym waverider shape is obtaiaed
{refer aga?n to the bdold curve in Fig, 10). The
resulting characteristics of this optimized wave.
rider are then plotted on Fig. 11 for 8, = 11°,
This process is repeated for other valyes of 8,
say 12°, 13%, and 14°, For each value of 8¢, an
optimized waverider 1{is obtaised, and its charac-
teristics plotted in Fig. 11 as the open symbols,
(The solid symbols will be discussed later,)
Hence, Fig., 11 pertains to an entire series of
optimized waveriders, However, note that the (L/0)
curve itself has a maximum {in this case for 0¢ =
12°), This yields an "optimun of the optimums”,
and defines the final viscous optimized waverider
at M, = 6 for the flight conditions shown tn Fig,
11, The front views of the optimum shapes at each
value of 8¢ are shown in Fig, 12, and the corres-
ponding perspective views are shown in Fig, 13.
finally, a summary three-view of the best optimym
(the “"optimum of the optimum”) waverider, which
here corresponds to 6, * 12°, is given in Fig. 14,
Also in Figs. 12-14, the lines on the upper and
lower surfaces of the waveriders are inviscid
streamlines, Note in these figures that the shape
of the optimum waverider changes considerably with
" 8¢. Moreover, examining (for example) Figure 14,
note the rather complex curvature of the leading
edge in botnh the planform and front views; the
optimization program is shaping the waverider to
adjust both wave drag and skin friction drag so
that the overall L/D is a maximum, Indeed, it was
observed in all of the present results that the
best optimum shape at any given M_ resylts in the
magnitudes of wave drag and skin Triction dray
being approximately tha same, never differing bdy
mare than a factor of two. For conical shock
angles below the best optimum (for example 04 *

11% in Figs. 12 and 13), skin friction drag ?s
greater than wave drag; in contrast, for conical
shock angles above the best optimum (for example
8y * 13° and 14° in Figures 12 and 13), skin fric.
tion drag is less than wave drag, (Note: For a
hypersonic flat plate, using Newtonian theory and
an average skin friction coefficient , it can
readily be shown that at maximumum L/0, the wave
drag is twice the friction drag,)

The results in Figs. 11-14 pertain to M_ = 6,
An analogous set of results for the other extreme
of the 1ifting hypersonic flight spectrum at M, =

25 13 given in Figs, 1518, The serodynamic char.
acteristics of optisum waveriders for 0, « 7° 8% g°¢
and 11° are yiven as the open sywbols Fig. 15 (the
solid symbols will pe discussed later,) The
respective front views are shown in Fig, 16, and
perspective views in Fiy, 17. Finally, the best
optimum Mach 25 waverider (which occurs at 8
9°) s summarized ta Fig. 18, Comparing the op-
timum configuration at M, = 6 (Fig, 14) with the
optimum configuration at Mach 25 (Fig. 18), note
that the Mach 25 shape has more wing sweep, and
pertains to a conical flowfield with a smaller wave
angle, hoth of which are intuitively expected at
higher Mach number, However, note from the flight
conditions listed in Figs. 11 and 15 that the dody
slenderness ratio at M, = 6 1s constrafined to be
b/t = 0,06 (analogous to & supersonic transport
such as the Concorde) but that b/t = 0.N9 is the
constraint chosen at M, = 25 (analogous to a hydro-
gen fueled hyparsonic aeroplane such as the British
HOTOL). The two different slenderness ratios are
chosen on the basis of reality for two different
aircraft with two different missions at either ex-
treme of the hypersonic flight spectrum, Also note
in Figs. 16-18 the optimization program has sculp-
tured a best optimized configuration with a spline
down the center of the upper surface--an interest-
ing and curious result, due principally to the com-
peting effects of minimizing pressure and skin
friction drag, while meeting the slenderness ratio
constraint,

Return to Fig. 15, and note the solid symbols.
These pertain to the values of and L/D obtained
by setting the ratic of specific heats y to l.l in
order to assess possidle effects of high tem=
perature chemically reacting flow, The solid sym-
hols pertain to an optimized waverider at 04 = 9°¢
with y = 1,1, This 1s not necessarily the best
optimum at Mach 25 with v = 1,1; rather, it is just
a point calculation to fndicate that high tem-
perature effects will most 1ikely have a signifi-
cant impact on optimized waverider generation, and
that such effects are worthy of future investiga-
tion. The detailed aspects of high temperature
effects are beyond the scope of the present paper;
additiona) discussion is given in Ref, 7,

As a final note in this section, return to Fig.
3, and note that the solid symdols pertain to the
present investigation, The flagged square has been
discussed eariier as the data point for a half-cone
with a delta wing at zero angle-of-attack; it is
not part of the present waverider family, The un-
flagged solid square at M_ = & pertains to a rela-
tively large slenderness ratio of 0.087, used to
generate a waverider for wind tunnel testing. The
remaining solid symbols, the circles and triangles,
pertain to the present discussion, Recal) that the
circles are for b/t = 0.06 (a Concorde-iike slen-
derness ratfo for a low Mach number configuratfion),
and that the triangles are for b/t =0.09 (a HOTOL-
11ke slenderness ratio for a high Mach numbder
configuration). In the present sectfon, we have
discussed results obtained at Mach 6 and 25; Fig, 3
shows these plus others at intermediate Mach num-
bers. Al of these cases are discussed in detail
in Ref. 7. However, in regard to Fig,3, emphasis is
now made that the present viscous optimized waveri-
ders produce values of (L/D) which exceed the "L/D
barrier® discussed in Section I, and shown as the
solid curve in Fig.3. Indeed, the present waverider

L/0 variation is more closely given by




(L/n)ﬂlll * é&!ﬁ

shown as the dashed curve in Fig, 3. Note that
the two paints given for My = 20 and 25 deviate
away from the dashed curve, This is a Reynolds
number effect., Recall that all the Mach number-
altityde points for the present waveriders are
chosen to follow a typical lifting vehicle flight
path through the atmosphere. The point at Mach
25 is at very high altitude (250,000 ft.), with a
corresponding low Reynolds number (Re = 1.4x107);
the flow is completely laminar, At Mach 20, the
Reynolds number {s 12 times higher, but based on
the transition criterion discussed in Section [!
the flow is still completely laminar. Hence, the
laminar skin-friction coefficient at the Mach 20
point in Fig. 3 is much lower (c¢ « 1//Re) than
at the Mach 25 point, with an attendant larger
(L/D) at Mach 20. 1n contrast, the point at

Mach 15 1s transitional, with regions of both
laminar and turbulent flow, and hence with
larger skin-friction and a lower (L/D). In

any event, the results gfven in Fig, 3 indicate
that the present viscous optimized waveriders
produce high values of (L/D), and therefore are
worthy of additional consideration for hypersonic
vehicle application.

B. Sensitivity to Transition

Because the major thrust of the present work
is the inclusion of detailed viscous effects in
the waverider optimization, the question
naturally arises: How sensitive are the present
waveriders to uncertainties in the location of
transition from laminar to turbulent flow? To
address this question, a numerical experiment is
carried out wherein the transition location was
varied over a wide latitude, ranging from all
laminar flow on one hand, to almost all turbulent
flow on the other hand, with various cases inbe=
tween, Specific results at Mach 10 are given in
Fig. 19; here values of (L/D) are given for opti-
mized waveriders as a function of assumed tran-
sition location. The point corresponding to the
transition correlation described in Section II,
.3, is denoted by "x* in Fig. 19. Other points
in Fig. 19 labeled 5x, 10x and 15x correspond to
transition locations that are 5, 10 and 15 times
the value predicted by the transition correls-
tion. A1l the data given in Fig. 19 pertain to
optimized waveriders for 8, = 9°, which yields
the best optimum at Mach 16 for the usual tran-
sition correlation, (Note, however, that 0¢ = 9°
may not yield the best optimum for other tran-
sitfon locations; this effect §s not investigated
here,) The results in Fig. 19 demonstrate 2
major increase in {L/D) in going from almost all
turbylent flow to all Yaminar flow, However, for
the case where transition is changed by a factor
of five, only a 2% change in L/D results., Even
for the case where transition {s changed by
factor of ten, a relatively small change in L/D
of 113 results, On the other hand, the shapes of
the resulting optimized waveriders are fa!r?y
sensitive to the transitton location, as
tllustrated in Figs. 20 and 21. The comclusion
to be made here is that waverider optimization
i3 indeed relatively sensitive to transition
location, and this underscores the need for
reliable predictions of transitton at hypersonic
speeds.

C. On _the Use of Average Skin Friction Coefficients

The present detailed viscous anslysis computes
the surface shear stress distridutions, and
integrates over the surface to obtain the total
skin friction drag. This requires a substantial
amount of computer calculations, and leads to the
question: Can an overall average skin friction
coefficient be used within the optimization pro-
cess rather than dealing with the detailed shear
stess distributions? To address this question,
consider the best optimum Mach six case given in
Fig. 11, which was orginally calcylated with the
detailed shear stress distributions. From this
result, an average skin friction drag coefficient
was calculated for the complete configuration.

Then the optimization code was run again for the
same Mach six case, now using this average skin
friction drag coefficient. The results are given {n
Fig. 11 as the solid symbols. Only a small dif-
ference exists between the two cises; indeed, the
resulting waverider shapes are virtually the same,
as given in Ref. 7. This implfes that if an
accurate average skin friction drag coefTicient can
be obtained, the resulting optimized waveriders
would be reasonadbly valid. However, the problem
with this method is that the information needed to
obtain the average skin friction drag coefficient
is not known apriori. Moreover, if other indepen-
dent means are used to obtain an approximate
average skin friction drag coofficicnt and this
approximate aversge value fs wused in the optimiza-
tion process, the results can be quite different
from those obtained from the use of detafled shear
stress distributions; see Ref, 7 for more
discussion on this aspect. This situation, in come
binatton with the sensitivity to transition
demonstrated in the previous section, seems to dice
tate the necessity of using the detailed shear
stress distributfons rather than some approximate
average value of skin friction drag coefficient for
obtaining the proper optimized waveriders,

D. Inviscid Optimized Waveriders

As a final note, it ts interesting to pose the
question: 1if the skin friction is deleted from the
present analysis, what type of optimized inviscid
waverider configuration, with a constraint on slen-
derness ratio, is produced? To examine this
question, the present computer code was run without
skin friction as part of the optimization process,
covering the range cf Mach number from 6 to 25. A
typical result for the inviscid optimtzed configu-
ration §s shown in F1g.22. Here we see essentially
3 wedge-1ike caret waverider, such as the classic
configuration generated by the two-dimensional flow
behind a glgnar oblique shock wave, as discussed by
Nonwefler *. This clearly indicates that the
optimized fnviscid waverider with slenderness ratio
as the constraint fs indeed a caret wing. The
result shown in Fig, 22 is eroduced by the present
confcal flow analysis as a “limiting case", wherein
the optimum shape is seeking the flattest portion
of the confcal shock wave. To see this more
clearly, return to Fig. 6. The resulting inviscid
waveriders are being generated by relatively flat
streamsurfaces at the extreme back and bottom of
the generating conica) flow-field == where the
shock radius of curvature is the largest and the
flow is closest to being two-dimensional,
Consequently, the inviscid configurations are tiny




shapes compared to the scale
of the flowfield in Fig, 6, and they are
“squeezed” into & tiny area at the bottom of the
shock base. [In turn, due to the logic of the
existing conical flow code, only a few pressure
and shear stress points are calculated on the
surface of these tiny waveriders, raising
questions about the numerical accuracy of the
calcylation of their 11ft and drag, Therefore,
no further discussion about the inviscid opti-
mized waveriders will be given here, except to
emphasize again that a two-dimensional caret wing
seems to be the optimum inviscid shape that is
predicted by the present conical flow amalysis.

IV CONCLUSIONS

In comparison to previcus optimized waverider
analyses, the present work is the first to
include detailed viscous effects within the opti-
mization process. From this work, the following
major conclusions are made:

1. The resulting family of viscous hyper-
sonic waveriders yields predicted high values
of (Lyp) which break the "L/D barrier”
discussed in Section I,

2. The optimization process for the viscous
waveriders results in distinctly different
shapes compared to previous work with
jnvisctd-designed waveriders.

3. The fine details of the viscous solution,
such as how the shear stress is distriduted
over the surface, and the location of tran-
sition, are crucial to the details of the
resulting waverider geometry.
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Schematic of a simple caret wing
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Perspective views of a series of optimized waveriders at Mach ri
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Abstract

An upwind difference, finite volume algorithm was used to
numerically solve the full three-dimensional Euler cquations for
iwo fowfields, Mach numbers 2.28 and 5.00, each containing a
helical-type vortex impinging on an oblique shock wave. These
solutions showed several interesting and unexpected results. In
neither case did the jump across the shock cause the vortices to
breakdown. However, two ususual structures were observed.
The first was common to both flowfields and was seen as arcas
of flow reversal around the outside of the post-shock vortex.
The second unexpected structure was observed only in the Mach
5.00 flowfield and was seen as the formation of a trough-like
structure around the outside of the post-shock vortex. Further
study is needed to determine the cause of these structures. They
may possibly be a result of vorticity generation due to the
nonuniform pre-shock flowfield combined with the shock curva-
ture. To the best of the author’s knowledge, this is the first
time these two structures have been observed.

Introduction

A recent study at the University of Maryland has been under-
taken to numerically solve the interaction flowfield between a
3.D, helical-type vortex and an oblique shock wave. This paper
is based on the work presented in Reference 1. The study inves-
tigates Euler solutions to three-dimensional shock wave/
vortex interaction (SW/VI) at two Mach numbers, namely
Mach 2.28 and 5.00. Figure 1 shows a schemauc of the flow-
field. This is the first work known to the authors in which this
flowfield has been studied.t

Computational domain = physical domain

v Oblique shock wave

3-D vortex

Fig. 1 Schematic of the flowfield.

*Aerospace Engineer, Propulsion Group. Member AIAA.
**Professor, Aerospace Engineering Department. AIAA
Fellow. :
tThere is one study in which the interaction between a vor-
tex and a normal shock wave is examined (Ref. 2).

Copsnight T Amencan insutute of Aeronautics and
Astronautics, [ng.. 1989 Al rights reserved

The study is made up of three parts. In the first part, a nu-
merical mode! is chosen which is capable of simulating the
flowfield. In the second part, an input vortex is developed
which can be fed into the upstream boundary of the computa-
tional domain. These two"parts are then brought together in the
third part of the study where the numerical algorithm is used to
solve the shock wasve vortex interaction flowfield. Each of these
parts are discussed in detail below.

As mentioned above, there has been no work studying this
particular interaction problem, aithough Delery et al in Refer-
ence 2 have studied the interaction between an normal shock
wave and a vortex. They experimentally investigated the struc-
ture of a helical-type vortex in a supersonic flow and studied
vortex breakdowntt induced by a normal shock wave. They
also developed an inviscid numerical model to simulate the
results. Delery et al chose to characterize the vortex by two
parameters, the freestream Mach number and the ratio of the
maximum tangential ‘elocity divided by the freestream axial ve-
locity. Figure 2 shows the breakdown process as a function of
these two parameters.

0.4 , = !t_M_ _Inviscid flow calculation
Xq ¢
0.3
0.2
01
_Pupsweam
0 2 4 6 Paownsiream
1 1.5 2 Mg 2.5

Fig. 2 Vortex breakdown curve. (From Ref. 2).

+tVortex breakdown is a phenomena wherein a vortex drasti-
cally changes its structure and takes on one of several new pat-
terns. The restructuring is characterized by the information of a
stagnation point on the vortex axis (Ref. 3).
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The work contained:in Reference 2 formed a basis for the in-
put vortex used 1in our study. This will be discussed helow.,
However, there is an obvious and tundamental difference be-
tween our work and Delery ¢ al’s investigations. In their
studies the voriex encounters a subsome flow atter passing
through the normal shock and while 1n our work the freesircam
tlow 1y still supcrsonic after going through the oblique shock
wave. This may be why no vortex brcakdown was obscrved for
the two SW/ VI cases outlined helow.

There are a vanety of applications where shock wave/vortex
ntcractions may take place. Figure 3 presents three examples.
The lirst example, taken from Reference 2, shows a vor-
tex/shock interaction on the leeward side of a delta wing, Mod-
crn supersonic aircraft and missiles require maximum
maneuvcrabtlity resulting in large angles of attack. This, in turn,
results in strong vortices being shed from fins and wings. These
vortices can have a significant impact on the vehicle perfor-
mance and even safety (Ref. 4).

The second example shown in Figure 3, again from Reference
2, is that of a supersonic inlet ingesting a vortex. This is obvi-
ously an undesirable situation. A knowledge of the conse-
quences of this interaction is necessary to judge the severity of
the situation.

~sm oo oA
=

Canard

Vortex

Breakdown

a) Transonic shock/
vortex interaction
(From Ref. 2).

Breakdown
Shock

n

b) Supersonic Inlet

(From Ref. 2).
Shock
Bow
shock Vortex
Wedge

)

¢) Injection into a
supersonic
flowfield.

Fig. 3 Shock wave/vortex interaction applications.

The third example presented in Figure 3 uses the interaction
process to enhance mixing in a supersonic combustor. Whercas
the fiest two examples are potentially undesirable situations, this
dlustrates a case where the interaction between a shock wive
and a vortex may have a positive effect. The posaibility of using
SW/VIL in this way was suggested 10 the first author by Dr.
David Van Wic of the Johns Hopkins University Applied Phys-
ics Laboratory.

Discussion
The Numerical Modcl

The {Towfield is approximated by numerically solving the Eul-
er cquations rather than the full Navier-Stokes equations. This
was done for several reasons: 1) solving the Euler equations can
be done at a fraction of the cost in code development and com-
puter storage and run time over what is required to solve the
full Navier-Stokes equations and 2) since very little research was
found on the SW/VI process, a simple approach was desirable,
A number of references were found in which the Euler equa-
tions were used successfully to model vortex dominated flow-
fields (see References 2, 5, 6). These references and our own
experience justified the use of the inviscid equations for this
problem.

After determining the class of equations to use it was neces-
sary to choose a numerical model. The scheme chosen is based
on the algorithm developed by Dr. Peter Gnoffo of the NASA
Langley Research Center (Ref. 7). Gnoffo describes the model
as:

**... a robust, finite volume, single-level storage, implicit
upwind differencing algorithm which has been documented
and tesied on several three-dimensional blunt body flows. |
The algorithm can run at unlimited Courant numbers but
requires the inversion of only 2 § x § matrix per com-
putational cell.’” (Ref. 7)

Our experience showed that the model was indeed robust, ac-
curate, and capable of capturing shocks in a crisp manner.

The algorithm is briefly discussed below for completeness
sake. A more detailed discription can be found in Reference 7.
The model formulation begins with the iategral form of the
Euler or inviscid equations

VW o) 7oad=o0 M
RNVt oy,
) o? . .
d ol ou? + pi {
where g, = — | pv J= el +pi | A= |]
dr ow owl + pk £
oE pEV + pV
Q = volume,
o = surface area,
P = density,
u. v, w = velocity components in the 7, J, k directions,
E = total “nergy pcr unit mass,
14 = velo:ity vector,
P = pressure,
I,/,k = the unit normal vectors.




Unlike fimte diffcrence methods which approximate the flow
ficld by a number a gnd ponts, a finite volume micthod divides
the Nowticld up o cells. Equation (1) s then apphied 104 s
gle celt witun the Howlicld resuling i the following appros:
mate cquation

1)
ba. 4, + 2 (g, o, )y =1 ]
LY} -
whueie g, W' 4",
nov |,
n = indicatcs the 7 + | and n ume step
respectively
[ = indicates the ith cell,
Q = the volume of cell /,
ot = the time step,
m = indicates the mth face of ceil i,
M, = the number of faces surrounding ccli 4,
8. = ,710'/1 ¢ n:#":v
i + Y2 = indicates the cell facc between cells i and
i+ 1,
g,. . = the surface arca between cells i and

i+ 1.

The upwiad differencing is introduced in the form of a second
order dissipation term as follows:

8..=.5(8 + 8+ - d, 2 (2)} 3)
where i = indicates the values at the cell center being
evaluated,

i + 1 = indicates the values at the cell center of
the neighboring cell which shares surface
i+ %,

d,. .(2) = the 2nd order dissipation term.

The second order dissipation term is taken from Helen Yee's
paper, **Numerical Experiments with a Symmetric High-
Resolution Shock-Capturing Scheme'* (Ref. 8) and is defined as
follows:

d,. (2) = R:o :-l |L:o':| ‘Rn": (qIOI‘
- q’:) - minmod[R,_ i (q7 - q,-[')' R:o :
(q:ol' - Q:')- Rw!/! (Q:ol.) - q:vl.)“ 4

The superscript * means to use the most recent values available.
The diagonal matrix L is made up of the eigen values of matrix
A (used 10 linearize dg with respect to dq), matrix R is made
up of the right eigen vectors of matrix A, and matrix R ' is
the inverse of R. The expressions for these matrices are devel-
oped using Roe’s Property U (Ref. 9). A detailed evaluation of
them can be found in Reference 7.

The model was validated by comparing its results to analyti-
cal solutions of 2-D flowfields such as a flowfield containing an
oblique shock, a slip line intersecting an oblique shock, and two
intersecting shock waves. These flowfields, aithough simple, pro-
vide a good test of the algorithm because the abrupt changes in
the flow pioperties across the discontinuities typically cause
shock smearing and down stream oscillations in flowfield prop-
erties.

Overall, the model results compared very well with analytical
solutions. The numerical solution displayed crisp shocks with a
minimal amount of smear and little downstream oscillation of
the flow properties. The algorithm proved to be robust and

converged guickly to a solution while dong a very good job of
conserving mass, momentum, and energy. And as will he seen
bolow, i also cotverges 1o a soiution in very adscerse tow situd
tons, namcly, the SW. VI flow,

It should be noted that tor every case discussed below the so-
luton demonstrated good global conservation of mass,
momenutum, and cnergy. All cases where ran on the University
of Maryland Univac 1190 computer using a flowficld containing
45360 cells (35 cells in the X-direction and 36 cells in the Y-
and Z-directions).

The Input Vortex

The nature of this study required that a vortex be provided
as an upsticam boundary to the flowfield. This input vortex
would then sweep downstrcam as the solution was iterated in
time. Therefore, it was necessary to find and/or develop a suit-
able input vortex.

As mentioned above, ‘there has been surprisingly little work
done detailing supersonic vortices. Only one reference was
found which developed a useabie input vortex, namely, Refer-
ence 2. The input vortex discussed in Reference 2 was derived
by assuming uniform axial velocity, zero radial velocity, and
constant total enthalpy. The tangential velocity, V,, was
described in terms of the classical Burgers® vortex:

vV 2
£ -w(-3)]
- r ry

where wu, = the freestream velocity
K = vortex strength parameter
r = the radial direction
ry = VOrtex concentration

With the above assumptions and Equation $, the radial momen-
tum equation can be integrated for static pressure, thus, com-
pletely describing the vortex.

Two exampies of the tangential velocity and pressure profiles
resulting from the above development are illustrated in Figure 4
and compared with the experimental results of Delery et al. No-
tice that increasing K increases the vortex strength, as expected.

To test this model. a vortex was input into a Mach 2.28 frec-
stream and allowed to sweep downstream without the interfer-
ence of a shock wave. The solution reached steady state in
about 20 time steps. The pressure and density profiles from the
steady state solution are illustrated in Figures S and 6. Other
property profiles followed a similar trend. The solution shows
the vortex changing with downstream distance indicating that
the simple vortex model was not adequate. Curves A, B, C,
and D represent profiles through the vortex at increasing dis-
tance downstream. This progressive weakening of the vortex was
characteristic of all the vortices tested.

There appeared 1o be a slowing of the change in the vortex
with downstream distance. Therefore, it was thought that input-
ting the final vortex profile from the outflow boundary as the
upstream boundary in a new flowfield might lead to a con-
verged vortex (one which did not change with downstream dis-
tance). As shown in Figures 7 and 8 this was indeed the case.
The vortex clearly evolves to a converged solution. It was this
final vortex that was then used as the upstream boundary for
the Mach 2.28 SW/VI studies.
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Fig. 4 Comparison between the experimental vortex pro-
filas {Ref. 2) and the vortex modei profiles for
Mach = 2.28 and angle of attack = 10 degrees.
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A similar approach was used 1in developing a vortex tor the
Mach 5.00 case. Untortunately, unhke the Mach 2.28 case, the
vortey novet tully converged tooa binal protile, Freure 9 shows
the density protiles througly the vortes lor 4 oyldes Tach oy
takes the previoas oyele’s downstream vortex profile and uses o
at an upstream protile. The vortex changes rapidly at hirst but
then, rather than coverging, continucs 10 change at a slow,
steady rate. 1t was assumed that it would eventually dissipate
totaily. In spite 0! this anomaly, it was decided to use the vor-
ten reprosented by curve D in Figure 9b Tor the Mach S.00
SWOVT G

The cvolution of the simple vortices that were input to the fi-
ial vortices that were output may be caused by a three-
dimensional relieving effect. The input vortex model suggested
by Delery ¢t al (Ref. 2) is a simple 1-D solution to the Euler
cquations. It 1y likely that when the vortex is introduced into a
three-dimensional ficld, it would weaken through the 3-D coup-
ling of the governing equations. Since the vortices did evemually
converge to a constant profile (or nearly constant profile), they
were deemed adequate to use as input vortices for the SW/ V]
studies.

The Shock Wave/Vortex Interaction Results

Understanding the results of the Mach 2.28 and 5.00 SW/VI
flowfields is difficult because, through the interaction process,
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a) Cycle 1 — vortex 3 t0o 3A
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¢) Cycle 3 — vortex 3B to 3C

ihe tlow becomes tully three-dimensional. inherent in this ditfi-
cults a8 trving to visaahee the 30 results on a 2.1 medium.

Lo wd i the process, streambine and contour plots will be
mned alone with crossesections curves of parameters cut through
the contour piois. Bach comtour plot can be tahen perpendicula
to all three axes and perpendicular to the freestream Nlow be-
Innd the oblique shock wave. The cross-section curves can be
cut across the contour plot perpendicular to cach of the two
aves. It quickly becomes apparent that the cxamination of a
three dimensionat Howthield w3 complex and Tthonous arocess.

Keep the following in mind when viewing the plots: Each
contour plot will usually have two inserts which will schemaii-
vaily show the location and orientation of the figure with
regards to the rest of the flowfield. Figure 1 shows the oricnta-
tion of the axes. The contour and streamline plots will be
shown in the Y.Z plane only and are viewed as if the observer
were standing along the negative X-axis looking in the positive
X direction.

In discussing the flowfield solution it is necessary to under-
stand the swirl direction of the vortices. The vortices in this
study swirl in a counter-clockwise direction when viewed as if
one were standing on the negative X-axis looking in the positive
X direction. The left and right side of the vortex refer to the
vortex when viewed from the negative X-axis looking in the
positive X direction.
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Shock Waves Vortex Interaction ( ase No. |

The tirst case. desigmited SW VT Case Noo 1, ntroduces the
vortex discussed above mto a Mach 2,28 tHowticld contaning an
ablique shock wave resulting trom a wedge angle ot 20 degrees.
Fizures 10 and 11 show the density contour plots at various lo-
cauons along the X-axis. Figures 12 and 1) show density cross-
section curves through the post-shock vortex.

Four observations can be made based on the density plots:

1) The vortex did not breah dows alter passing through
the shock wave,

2)  The shock surface develops a convex-concave shape.

3) A fairly coherent area of high density has devecloped to
the left of the vortex at the point where the vortex pass-
es through the shock wave. This arca continues down.
stream along with the vortex.

4) A large area of low density developed on the right side
of the vortex after it passed through the shock wave.
This area almost encompasses the vortex in the last
plane.

5)  The vortex is deflected to the left after passing through
the shock.

The pressure and Mach number plots are presented in Reference
1 and echo these observations. The cause of these effects is due
to the fact that ihe velocity component on each side of the vor-
tex intersects the shock wave at different angles. This results in
a shock curvature across the vortex and the corresponding dif-
ference in the properties across the shock on the two sides of
the vortex.

Figures 14 and 15 show the post-shock axial contour plot and
the tangential velocity streamline plot, respectively. Finally,
Figures 16 and 17 are cross-section curves correspondifig to
Figures 14 and 15. Notice the asymmetrical shape of the axial
and tangential profiles. This is (o be expected, again, because
the velocity vector intersects the oblique shock wave at different
angles on the right and left sides of the vortex.

Although, the asymmetry was expected, the appearance of
several streamlines running opposite the main vortex streamlines
was not expected. These streamlines suggest the formation of
regions of reversed flow and can be seen along the outside of
the vortex shown in Figure 15. The reversed flow to the right of
the main vortex can also be seen in the tangential velocity pro-
tiies as a dip in the profile.

The cause of this reversed flow is unknown, however, it may
be due 1o vorticity generation due to the nonuniform pre-shock
flowfield and the shock curvature. More study is needed to con-
firm this.

Shock Wave/Vortex Interaction Case No. 2

The second case, designated SW/VI Case No. 2, introduces
the above discussed Mach 5.00 vortex into a a flowfield con-
taining an oblique shock wave resulting from a wedge angle of
32.8 degrees.

This flowfield will be harder to analyze than the previous
case for (wo reasons. The first reason is because of the smalier
distance between the shock and the vortex at the outflow plane
due to the decreased angle between the shock and the post-

shock freestream flow. Thus, the part of the flowfield of in-
terest 1s contained in a smaller arca. Additionally, the changes
m the properties across the shock are greater than for Case No.
1 wluch tends to wash out the more subre hanges.

Parallcling the plots shown for the case above, Figures 1R
and 19 show the density contour plots at vanous locations along
the X-axis. Figurcs 20 and 21 show density cross-section curves
through the post-shock vortex. Figures 22 and 23 show the
post-shock axial contour plot and the tangential velocity stream-
tinc plot, respectively. Figures 24 and 25 are cross-section curves
corresponding o Figures 22 and 23.

It is obvious after looking at the density plots that there will
be a lack of detail in the graphics. Case No. 1, however, pro-
vides some clues as 10 what to look for. There were some
similarities and one unusual difference between the two solu-
tions. The difflerence is a trough encompassing the main vortex
after it passes through the shock which is in addition to the
high and low areas seen in Case No. {. The following summa-
rizes the observations:

[)  There is a trough that appears to encompass the main

vortex after the vortex passes through the shock.

2) Regions of reversed flow appear outside of the main
vortex.

3)  The vortex has not broken down.

4)  The shock curvature, the areas of high and low proper-
ties, and the vortex deflection noted in Case No. | are
again present.

The presence of the trough in this case and not in Case No.
1 is most peculiar. It may be due to the formation of a slip
surface developed while the vortex is passing through the shock
wave or it may be a Mach number phenomena caused by the
increased shock strength in this case. it may also be related to
the regions of reversed flow. Again, more study is needed to
fully understand this phenomena.

Conclusion

This concludes the discussion of the shock wave/vortex inter-
action studies. The two cases have shown a variety of interest-
ing results. A most important conclusion of this study is that
the vortex did not breakdown in either case. Although it was
not noted above, the vortex strength did not change appreciably
in either case after passing through the shock wave. This may
be wiiy neither vortex broke down. Related to this may be the
fact that the post-shock freestream flow is supersonic.

Both solutions showed the expected shock curvature and areas
of high and low properties on the outside of the main vortex.
In addition to these effects, in each case, the vortex was deflect-
ed to the left as it passed through the shock wave.

There were two unexpected and fascinating results of the
study. The first one, common to both solutions, was the forma-
tion of regions of reversed flow after the main vortex passed
through the shock wave. These structures seen in the respective
streamline plots and the tangential velocity profiles across the
post-shock vortex are a puzzle. The cause of the structures is
unknown. [t is hypothesised that they may be the result of vor-
ticity generation due to the nonuniform pre-shock flowfield and
the shock curvature,
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The other unexpected result was observed in the second case,
but not in the first. It was the formation of a trough surround-
ing the main vortex after it passed through the shock. This
phenomena could be related to the above mentioned reversed
flow regions or it may be caused by the formation of a slip-line
like surface.

In any event. :he surprising phenomena observed as a result
of the numerical solution to these flowfields, namely the areas
of reversed flow and the trough structure, have not been

documented before to the best of the authors’ knowledge. How-

ever, caution must be used in drawing conclusions. This has
been a preliminary study of a very complex interaction flowfield
using, by necessity, a fairly simple approach. The results must
be weighed against this approach. 1t is hoped that these initial
findings will gerzrate further interest and study which will, in
turn, either support or challenge the results. Onlyv through more
anahvtical, exper:mental, and computational study wiil this flow-
ticld be fully wrzerstood.
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